[Universität Bayreuth] – Lithium-Sauerstoff-Batterien werden oft als wiederaufladbare Energiespeicher der Zukunft angesehen. Derzeit gibt es jedoch eine Reihe von Faktoren, die eine breite Anwendung verhindern.
Eine der wesentlichen Einschränkung sind hohe Überspannungen während des Ladevorgangs. Dies bedeutet, dass die zum Aufladen der Batterien benötigte Spannung erheblich ansteigt, was einen geringen Wirkungsgrad zur Folge hat. In einer neuen Studie, die in der Fachzeitschrift Chem erschienen ist, haben Prof. Dr. Francesco Ciucci von der Universität Bayreuth und Forschungspartner in China erstmals die Ursachen für diese Überspannungen identifiziert und erklärt.
Die Forschungsergebnisse können dazu beitragen, die Entwicklung effektiverer und effizienterer Lithium-Sauerstoff-Batterien und anderer wiederaufladbarer Batterien zu beschleunigen. Denn die Faktoren, die ursächlich an den Überspannungen beteiligt sind, lassen sich jetzt klar voneinander abgrenzen. Dazu gehören insbesondere die Langzeitkinetik der Oxidation von Lithiumperoxid (Li2O2) und die Oberflächenpassivierung durch Lithiumcarbonat (Li2CO2). Die elektrochemische Impedanzspektroskopie (EIS) ist eine Untersuchungsmethode, die es ermöglicht, diese Prozesse während der Batterieladung getrennt zu überwachen.
„In unserer Studie haben wir die elektrochemische Impedanzspektroskopie, welche die Verteilung der Kapazitätszeiten und die Verteilung der Entspannungszeiten nutzt, mit der differenziellen elektrochemischen Massenspektrometrie in situ kombiniert. Dies ermöglichte uns eine zeitlich aufgelöste Untersuchung des Lademechanismus in einem etablierten Modellkatalysator, der in der Forschung beispielhaft als Elektrode in Lithium-Sauerstoff-Batterien eingesetzt wird“, sagt Prof. Dr. Francesco Ciucci, Professor für Elektrodendesign elektrochemischer Energiespeicher und Mitglied des Bayerischen Zentrums für Batterietechnik (BayBatt).
Die in Chem veröffentlichte Forschungsarbeit demonstriert die Effizienz dieses Forschungsansatzes. Gleichzeitig betonen die Autoren aber, dass weitere experimentelle Untersuchungen notwendig sind, um den Mechanismus weiter aufzuklären.
Juan Chen, Emanuele Quattrocchi, Francesco Ciucci, Yuhui Chen (2023): Charging processes in lithium-oxygen batteries unraveled through the lens of the distribution of relaxation times. In: Chem (2023). DOI: 10.1016/j.chempr.2023.04.022